

Practical application of Helicity to ICCs

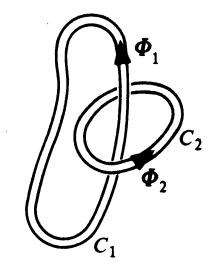
S.Woodruff

Lawrence Livermore National Laboratory, Livermore, California.

(Many thanks to R.Raman, S. Prager and M.Nagata for figures and to C.T. Holcomb, D.N.Hill, E.B.Hooper and B.W.Stallard for criticism)

SW 020100

-


Helicity has application for predicting equilibrium, evolution and for discussing current drive.

- •Some theory
- •ICCs with use for helicity: the Spheromak, RFP and HI-ST
- •Asymmetries are a natural feature of relaxed/relaxing plasmas.
- •Current drive may be interpreted through using helicity.
- •The future?

Helicity is used as a constraint to derive the field configuration of 'relaxed' plasmas.

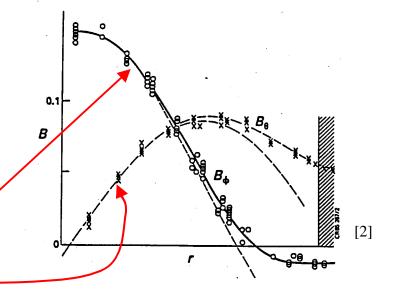
•Unlike flux and energy, K = A.BdV - describes also field-topology: 'linkage'.

•Moffat: K=2 1 2 - linked flux-tube example.[1]

- •Woltjer: force-free fields: $\times B = B = \mu_0 J$
- variational principle uses helicity as constraint to minimize magnetic energy.[2]

^[1] Moffat, "Magnetic field generation in electrically conducting fluids", CUP, 1978

^[2] Woltjer Proc. Nat. Ac. Sci. v44, no.6, p489, 1958


Taylor employed helicity to determine field profiles of the RFP.

•Taylor: application to RFP

equilibrium: BFM solution to

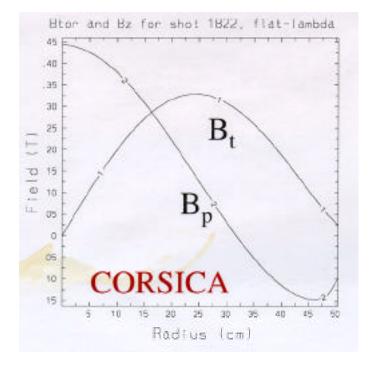
 \times **B**= **B** predicts field reversal:

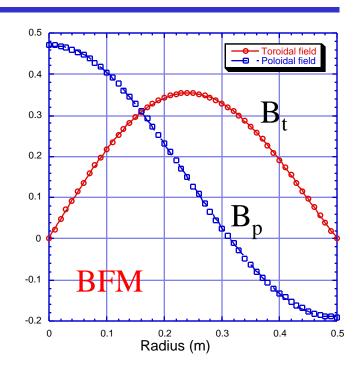
$$\vec{B}_0 = B_0[J_1(r)\hat{z} + J_0(r)]$$

•Relaxation theory developed: any process by which the plasma will dissipate energy whilst conserving helicity - initially presumed to entail only MHD turbulence, but since found to entail long-wavelength fluctuations (linked to instability). [1]

If equilibrium fields are close to force-free then helicity has application to the ICC.

ICC	Helicity	Taylor-	Vacuum	Helicity
		state?	field	input
Dipole	0	no	Strong	
Stellarator (torsatron)	1 2*	no	Strong	
FRC	0	In formation	Weak	
ST	~	maybe	Strong	\sim V _{loop}
RFP	~	yes	Weak	\sim V _{loop}
Gun Spheromak	~	yes	None	~V _{gun}

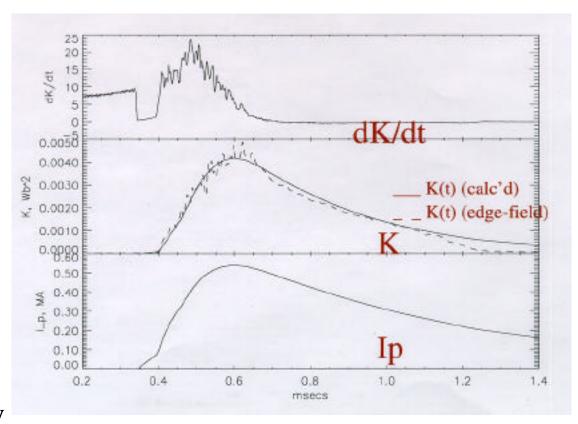

^{*} l is the pole number


•Is it useful to compare devices with similar helicity?

Spheromak equilibrium has simple Bessel function fields: epitomises relaxation.

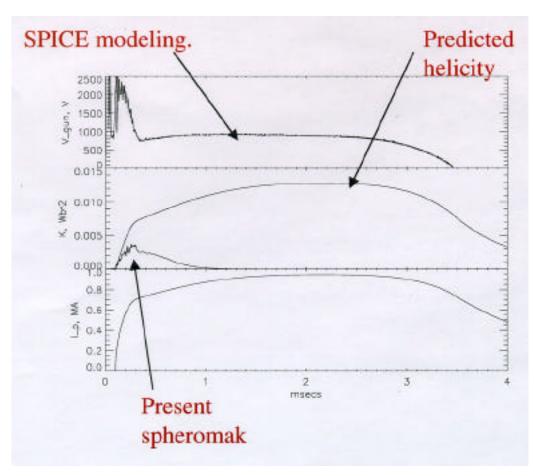
•Solution to $\times B = B$ for the spheromak:

$$\vec{B}_0 = B_0[J_0(r)\hat{z} + J_1(r)]$$

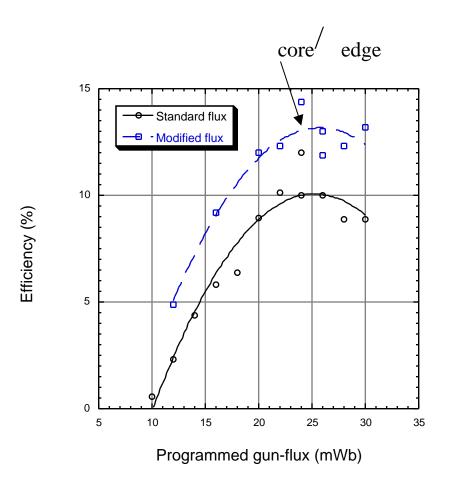

•The best 2D resistive MHD simulation gives good agreement with BFM!

Helicity balance can be used as a good model to predict spheromak evolution.

•The paradigm for relaxation physics is 'helicity-conservation':


$$\frac{K}{t} = \frac{-K}{K} + 2V_{inj} \quad _{inj}$$

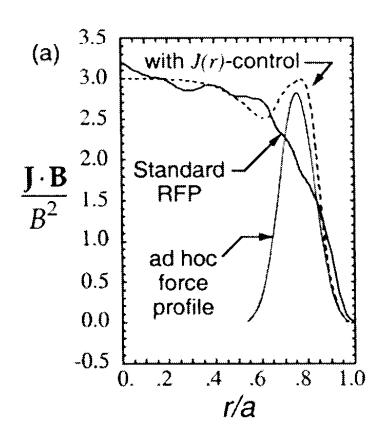
•The magnetic energy and plasma current can be calculated from the helicity evolution.

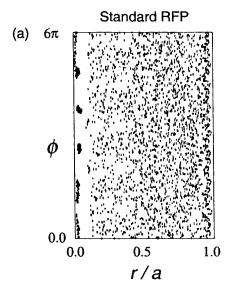

• Good agreement is found between predicted and measured helicity evolutions in SSPX.

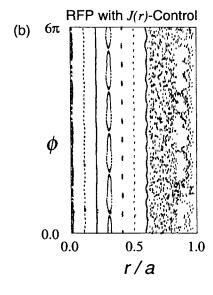
Helicity balance predicts the evolution of future experiments.

- •Predictions for future experiments, and supports the Fowler/Hua build-up model[1].
- •Energy balance is complimentary: physics is entailed in the decay time.
- •The predicted evolution uses a helicity decay time, $_{\rm K}\sim600\mu {\rm s}$. Future calculations will give $_{\rm K}(t)$.

Driving closer to Taylor state can improve efficiency.

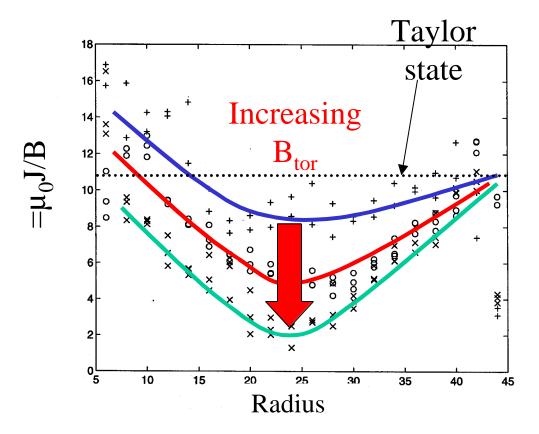



- •Drawing more flux from injector reduces the edge (~J/B) closely matches spheromak.
- •Also increases injection rate:

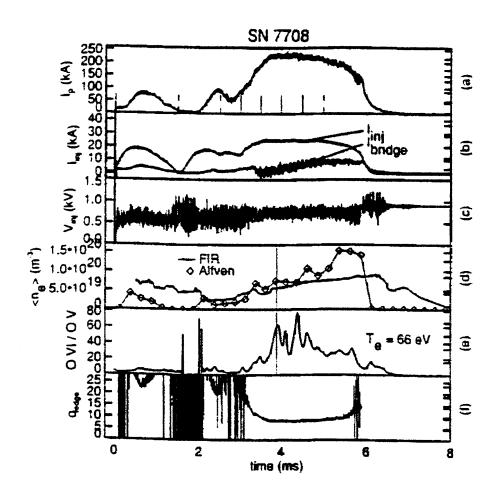

$$\dot{K} = 2V_{inj}$$
 $_{inj}$

•Flexible flux geometry in SSPX will allow near-Taylor state sustainment.

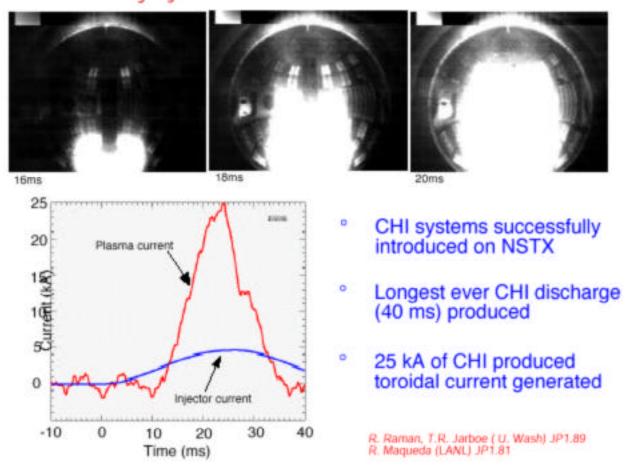
Maintaining relaxed systems close to Taylor state has many benefits.



•Sustaining RFP closer to Taylor state by current profile control leads to reduced fluctuation levels, higher temperatures and better confinement.[1]


Helicity injection into a ST with toroidal field appears to move profile away from Taylor state.

- •SPHEX-ST: With applied fields, -profile becomes far from relaxed.[1]
- •Driving away from Taylor state leads to low annular current.
- •Do strong fields inhibit relaxation?


Some evidence for relaxation in the ST - HIT.

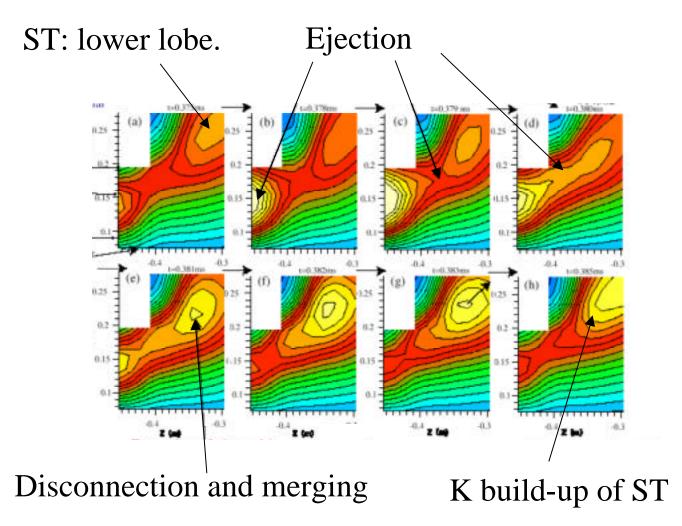
- •HI alone: 250kA toroidal current, 100eV (TS) measured T_e.[1]
- •Relaxation may entail RMF-like current drive.

NSTX - initial HI results are encouraging - 25kA toroidal current.

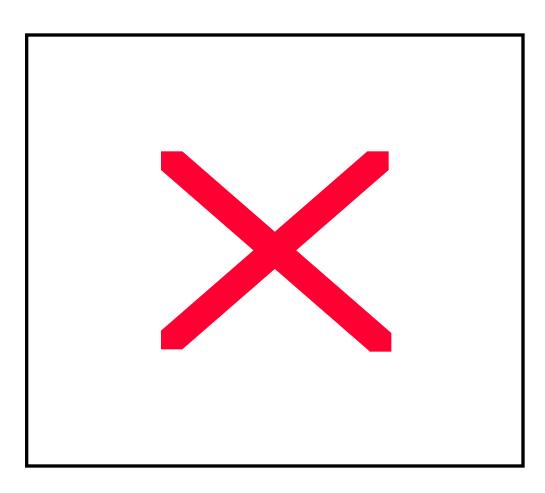
Coaxial Helicity Injection

Asymmetry is a common phenomenon in helicity injected devices

- •Often the minimum energy state has a helical component.
- •RFP dynamo modes: toroidal kink modes.
- •Spheromak/HI-ST n=1 mode: kinked distortion of open flux.
- •Internal probe measurements in SPHEX reveal asymmetric equilibria [1][2].

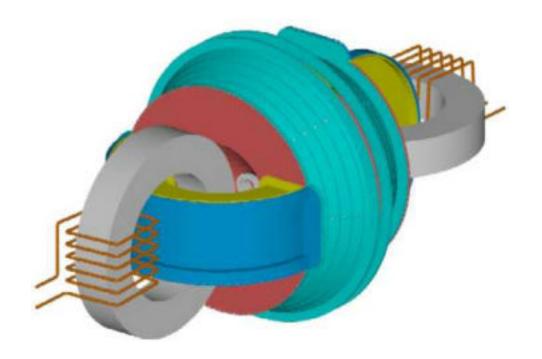

^[1] Duck et al Plasma Phys. Cont. Fusion v39, p715 1997

^[2] Woodruff - Thesis 1999


Helicity can be 'injected' by various means: formation and current-drive.

Method	ICCs with application	K_inj 'rate'
Ohmic solenoid	ST/RFP/FRC/Spheromak	$2V_{loop}$
Beam/Wave	All	I^2
PPCD/OPCD	RFP	$2V_{loop}$
F-theta pumping	RFP	<~~>
MHD dynamo	RFP/Spheromak/ST(?)	$\langle \tilde{v} \times \tilde{B} \rangle$. B dV
Coaxial Helicity Injection	Spheromak/ST	$2V_{\rm inj}$ $_{\rm inj}$
RMF/RMF(n=1)	ST/Spheromak/FRC	I^2
CT injection	Potentially all	K _{ct}

Poloidal flux contours in HIST reveal multiple CT injection - helicity injection and sustainment of ST.



'Bursting' can lead to helicity build-up and current drive in SSPX

- •Currents of 400kA can be driven by multiple plasmoid injection.
- •Strong ion heating occurs during formation [1], and could be linked to this process.

Future devices will exploit Taylor state and helicity injection: HIT-SI, SPHERA and SPIRIT.

- [1] Jarboe et al, Fusion Technology, 36 (1), p. 85, 1999
- [2] Alladio et al, Nuclear Fusion 37(12), p1759, 1997
- [3] Yamada et al, Proc Hi-Beta Wrkshp, Seattle, 18-20 March 1998

- •HIT-SI will enable a steady inductive supply of helicity to be delivered to a spheromak.[1]
- •SPHERA aims to produce tokamak configurations with a plasma central column.[2]
- •SPIRIT will allow multiple configurations to be formed, including FRC, spheromak, and low aspect-ratio RFP.[3]

Conclusion: relaxed/partially-relaxed plasmas can benefit from a description entailing helicity.

- •Descriptions of equilibrium, evolution and current drive are provided.
- •Sustaining close to Taylor state leads to efficiency gains in the RFP could also be realized in the Spheromak and ST.
- •Relaxation processes are still a subject of great interest in the spheromak and ST.
- •The future of HI both as a means to form and sustain plasmas looks quite intriguing.